震源スペクトル,マグニチュードの地盤増幅度への影響 と増幅度評価式の観測値への適用性

西川隼人1

要旨:本論文ではパーセバルの定理と極値理論に基づいて導いた地震動スペクトルと地盤増幅度の関係式を用い,地 盤増幅度に対する震源スペクトルのパラメータやモーメントマグニチュードの影響を調べた.また,提案した評価式 と観測記録による増幅度を比較し,評価式の適用性を検証した.提案した増幅度評価式によって, $f_c \approx f_{max}$ の最大地 動加速度,最大地動速度の増幅度への影響を調べたところ, f_{max} による影響は最大地動加速度, f_c による影響は最大 地動速度の方が大きいことが明らかになった.また,モーメントマグニチュード M_w と地盤増幅度の関係を調べた結 果, M_w が大きくなるほど,最大地動速度の増幅度が最大となる f_g が低振動数にシフトした.最後に提案式による増 幅度と観測値を比較したところ,最大地動加速度はやや対応が悪いものの,最大地動速度はよく対応した. **キーワード**:地盤増幅度,コーナー振動数,高域遮断振動数,震源スペクトル

1. はじめに

これまでの研究で,最大地動加速度,最大地動速 度などの地震動指標の地盤増幅度が地震の規模によ って変化することが指摘されており^{例えば1)}, 紺野ら²⁾ や翠川ら3)は地震観測記録から地震の規模に応じて 表層の平均S波速度と地盤増幅度の関係式を求めて いる、これらの研究では、地震の規模による地震動 の周期成分の違いが地盤増幅度に影響を及ぼしてい ることが指摘されているが、いずれも定性的な議論 にとどまっている.一方,著者⁴⁾は地震規模と密接 に関連している震源スペクトルのコーナー振動数fc と地盤増幅度の関係を調べるために、パーセバルの 定理と極値理論に基づきfeや震源スペクトルの高域 遮断振動数fmaxなどをパラメータとする増幅度評価 式を求めた. 評価式によってfcやfmaxの地盤増幅度へ の影響を調べたところ,最大地動速度の方がfeによ る影響が大きく、fmaxによる影響は最大地動加速度の 方が大きいことを明らかにしている.提案した増幅 度評価式はfcやfmax,サイト増幅特性のピーク振動数 やピーク増幅度を規定するパラメータによって、陽 な形で表した式であることから、これらのパラメー タを与えることにより解析的に増幅度を求めること が可能である.

ただし、この研究でサイト増幅特性として用いた Kanai⁵⁾のスペクトルはピーク振動数よりも高振動数 での増幅度の低下が著しく、観測記録で得られるサ イト増幅特性と対応が良くない.また、提案式と 地震観測記録による増幅度との対応を調べておらず, 提案式が地震動予測において適用可能かどうか確認 する必要がある.

そこで本論文ではサイト増幅特性として, Kanai⁵⁾ のスペクトルよりも観測値と対応がよいスペクトル を用いて、増幅度評価式を求めるとともに、評価式 による増幅度と地震観測記録から求めた増幅度の対 応を調べ、本論文で提案する増幅度評価式の適用性 を検証する. 解析では既往研究に基づき最大地動加 速度,最大地動速度の増幅度表評価式を求め,震源 スペクトルの形状を支配する $f_c \ge f_{max}$ の影響を調べ る. 続いて, 地震モーメント, モーメントマグニチ ュード, fcの関係式を利用して, モーメントマグニ チュードによる地盤増幅度の変化を見る.この際, fmaxの地盤増幅度への影響も調べるが、fmaxの地震依 存性については議論が別れている^{6),7),8)}ので, fmax がモーメントマグニチュードに依存する場合、依存 しない場合の両方のケースを考える. 最後に防災科 学技術研究所 KiK-net の地震観測記録を用いて増幅 度を算出し、本研究で求めた評価式による地盤増幅 度との対応を調べる.

2. 地震動スペクトルと地盤増幅度の関係

著者は、パーセバルの定理と極値理論からある地 点の地表面と解放基盤の地震波の最大振幅の比、い わゆる地盤増幅度が次式で表わされることを導びく とともに、模擬地震波や観測地震波においても関係 式が概ね成り立つことを示している^{4),9}.

¹ 舞鶴工業高等専門学校 教育研究支援センター 技術職員

$$F = \frac{A_s}{A_b} \stackrel{\text{\tiny top}}{=} \sqrt{\frac{\int_{-\infty}^{\infty} G(f)^2 F_b(f)^2 df}{\int_{-\infty}^{\infty} F_b(f)^2 df}}$$
(1)

ここでFは地盤増幅度, A_s は地表波の最大振幅, A_s は 解放基盤の地震波の最大振幅である.また, G(f)は その地点のサイト増幅特性, $F_b(f)$ は解放基盤波の フーリエスペクトルである.ここで $F_b(f)$ はBoore の研究¹⁰に従い, 次式で表わされるものとする.

$$F_b(f) = CM_0 \frac{1}{R} \exp\left(-\frac{\pi f R}{Q_s V_s}\right) S(f)$$
(2)

 $F_b(f)$ はS波のみから成り立つものとし,式(2)のC はラディエーションパターンなどをパラメータとす る係数,1/Rは幾何減衰に対応する.Rは震源距離で ある. M_0 は地震モーメント(dyne・cm),指数項は内 部減衰に対応し, Q_s はS波の減衰の程度を表すパラ メータ, V_s は地震発生層のS波伝播速度である.S(f)は震源スペクトルである.S(f)は次の ω^{-2} 則に従う 式で表されるものとする.

$$S_{A}(f) = \frac{(2\pi)^{2} f_{c}^{2} f^{2}}{f_{c}^{2} + f^{2}} \frac{f_{max}}{\sqrt{f_{max}^{2} + f^{2}}}$$
(3)

$$S_{V}(f) = \frac{2\pi f_{c}^{2} f}{f_{c}^{2} + f^{2}} \frac{f_{max}}{\sqrt{f_{max}^{2} + f^{2}}}$$
(4)

 $S_A(f)$ は加速度, $S_v(f)$ は速度の震源フーリエスペクトルである. Fig.1に震源スペクトルの一例を示す. サイト増幅特性G(f)は著者の研究⁴⁾ではKanai⁵⁾の提案したスペクトルを用いたが、このスペクトルはピーク振動数よりも高振動数側では振幅が急激に低下しており,実際のサイト増幅特性と対応がよくない. そこで今回は次の澤田ら¹¹⁾の提案した式をサイト増幅特性として用いることにした.

$$G(f) = \beta \sqrt{\frac{f_g^4 + 2\alpha f_g^2 f^2 + \alpha^2 f^4}{(f_g^2 - f^2)^2 + 4h_g^2 f_g^2 f^2}}$$
(5)

ここで f_g はG(f)のピーク振動数(Hz), h_g はピーク振動数の振幅を規定する係数, α は高振動数側の増幅 度を調整する係数, β は全体の振幅を調整するための 係数である. Fig.2に β =1, f_g =2, h_g =0.1の場合のG(f)と既往研究で用いたKanai⁵⁾の提案したスペクトルを 示す. 同図から分かるようにスペクトルは単一のピ ークから成っており, 今回の検討ではサイト増幅特 性が基本モードのみによるものと仮定する. Fig.2を 見てわかるようにKanai⁵⁾のスペクトルは f_g よりも高 振動数側の増幅度が急激に低下しているが, 今回用 いた澤田ら¹¹⁾のサイト増幅特性は高振動数側の増幅 度を調整でき,より実際のサイト増幅特性に近いも

のとなっていることが分かる.

同一地点における地表波のスペクトル $F_b(f)G(f)$ と基盤波のスペクトル $F_b(f)$ の C, M_0 , R は同じ値であり、両方の波の最大振幅の比をとる ことにより、キャンセルされる.また、式(2)の指数 項の Q_s は一般に $Q_0 f^{\alpha}(Q_0$ は定数)と表わされるが、 ここでは $\alpha=1$ と仮定することにより、この指数項を 定数と考える.これにより、式(1)は以下のように表 すことができる.

$$F = \frac{A_s}{A_b} = \sqrt{\frac{\int_{-\infty}^{\infty} G(f)^2 S(f)^2 df}{\int_{-\infty}^{\infty} S(f)^2 df}}$$
(6)

3. 地盤増幅度評価式の提案と f_c, f_{max}, M_wと地 盤増幅度の関係

3.1 地震動スペクトルのパラメータによる地盤 増幅度の表現

2章では地盤増幅度が震源スペクトルとサイト増幅特性によって表現できることを導いた.ここでは 震源スペクトルのパラメータである*f_c*, *f_{max}の増幅度* への直接的な影響を調べるために式(6)に基づき, *f_c*, *f_{max}やサイト増幅特性のパラメータf_g*, *h_g*による増幅 度の定式化を試みる.

まず,式(6)右辺分母の無限積分値を留数定理によって加速度,速度について求める.加速度の場合の 無限積分値は次のようになる.

$$\int_{-\infty}^{\infty} S(f)^2 df = \int_{-\infty}^{\infty} \frac{(2\pi f_c)^4 f^4}{(f_c^2 + f^2)^2} \frac{f_{max}^2}{f_{max}^2 + f^2} df$$

$$=\frac{(2\pi)^5 f_c^4 f_{max}^2 (f_c + 2f_{max})}{4(f_c + f_{max})^2}$$
(7)

また,速度の場合は以下のようになる.

$$\int_{-\infty}^{\infty} S(f)^2 df = \int_{-\infty}^{\infty} \frac{(2\pi f_c^2)^2 f^2}{(f_c^2 + f^2)^2} \frac{f_{max}^2}{f_{max}^2 + f^2} df$$
$$= \frac{(2\pi)^3 f_c^3 f_{max}^2}{4(f_c + f_{max})^2}$$
(8)

続いて,式(9)で表される式(6)右辺分子の無限積分値 を留数定理により求める.

$$\int_{-\infty}^{\infty} G(f)^{2} S(f)^{2} df$$

$$= \int_{-\infty}^{\infty} \frac{(2\pi f)^{n} f_{c}^{4} f_{max}^{2} (f_{g}^{4} + 2\alpha f_{g}^{2} f^{2} + \alpha^{2} f^{4}) \beta^{2}}{(f_{c}^{2} + f^{2})^{2} (f_{max}^{2} + f^{2}) \{(f_{g}^{2} - f^{2})^{2} + 4h_{g}^{2} f_{g}^{2} f^{2}\}} df$$
(9)

式(9)のnは加速度の場合は4,速度では2である.式 (9)の無限積分の計算が煩雑になるので,留数定理に よる無限積分の公式¹²⁾を用いて値を求めた.

$$\int_{-\infty}^{\infty} G(f)^2 S(f)^2 df = \frac{(2\pi)^{n+1} f_c^4 f_{max}^2 \beta^2 M}{2\Delta}$$
(10)

$$\begin{aligned} z = z \\ \Delta &= \sum_{i=1}^{7} f_i \\ a_1 &= 2f_c + 2h_g f_g + f_{max} \\ a_2 &= 2h_g f_g f_c^2 + 2f_c f_g^2 + f_{max} f_c^2 + 4h_g f_g f_c f_{max} + f_{max} f_g^2 \\ a_3 &= f_c^2 + 4h_g f_g f_c + f_g^2 + 2f_c f_{max} + 2h_g f_g f_{max} \\ a_4 &= -(f_c^2 f_g^2 + 2h_g f_{max} f_g f_c^2 + 2f_{max} f_c f_g^2) \\ a_5 &= f_{max} f_g^2 f_c^2 \end{aligned}$$

$$f_{1} = -f_{max}^{2} f_{c}^{4} f_{g}^{4} \quad f_{2} = -2a_{1}a_{4}f_{max}f_{c}^{2} f_{g}^{2}$$

$$f_{3} = a_{2}a_{3}f_{max}f_{c}^{2} f_{g}^{2} \quad f_{4} = a_{2}^{2}a_{4} \quad f_{5} = -a_{1}^{2}a_{4}^{2}$$

$$f_{6} = -a_{1}a_{3}^{2}f_{max}f_{c}^{2} f_{g}^{2} \quad f_{7} = -a_{1}a_{2}a_{3}a_{4}$$

Mは加速度では

$$M = -\alpha^{2} (a_{4}a_{5} + a_{1}a_{4}^{2} + a_{3}^{2}a_{5} + a_{2}a_{3}a_{4}) -2\alpha f_{g}^{2} (a_{3}a_{5} + a_{2}a_{4}) - f_{g}^{4} (a_{5} + a_{1}a_{4})$$
(11)

Mは速度では次のようになる.

$$M = -\alpha^{2}(a_{3}a_{5} + a_{2}a_{4}) - 2\alpha f_{g}^{2}(a_{5} + a_{1}a_{4}) - f_{g}^{4}(a_{2} - a_{1}a_{3})$$
(12)

加速度,速度に対する *M*(以降, *M_A*, *M_V*とする)を見ると, *M_A*の第2項と *M_V*の第1項の括弧内の係数と

 M_A の第3項と M_V の第2項括弧内の係数が同じであ るが、同じ係数に乗じられている項を見ると、 M_A の方が f_g の次数が高い. M全体では加速度は f_g の7次の関数であるのに対し、速度は5次の関数であり、 加速度の方が f_g に対する変化が敏感である. また、 f_c 、 f_{max} についても加速度の方(f_c 6次、 f_{max} 3次)が速度 (f_c 4次、 f_{max} 2次)に比べて次数が高い.

3.2 *f_c*, *f_{max}と地盤増幅度の対応*

ここでは f_c , f_{max} と式(6)~(12)によって求めた最大 地動加速度と最大地動速度の地盤増幅度の対応を調 べる.増幅度を求める際に必要なパラメータ f_c , f_{max} , β , f_g , h_g , aのうち, h_g は0.1, aと β は1に固定し, f_c , f_{max} , f_g の変化に伴う増幅度の変化を見た. Fig.3に f_c , f_{max} を変化させた場合の f_g と地盤増幅度の対応を示す. F_A を見ると, f_c が小さくなるほど f_g が低振動数の場合 の増幅度が大きくなる傾向にあるが, 高振動数で増 幅度が最大となるという特徴は変わらない. f_{max} の影 響を見ると, 値が小さくなるほど, 増幅度が最大と なる f_g が低振動数側にシフトしている. F_V は f_c による 変化が顕著であり, f_c が小さくなるほど増幅度の大 きい振動数が低振動数側にシフトしている. また, f_{max} による増幅度は F_A に比べて小さく, $F_A \ge F_V$ では f_c , f_{max} による影響が大きく異なっている.

このような f_a に対する F_A と F_V の違いの要因を式 (7)~(12)から詳しく調べることにする.ただし、基 盤スペクトルに対応する式(7), (8)にはfaは含まれて いないので, fg が含まれる地表スペクトルに対応す る式(10)の Δ , M_A , M_V から F_A と F_V の違いの要因を 見ることにする. Fig.4 に f_{max} を9Hzに固定し, f_c を 変化させた場合の M_A , M_V , Δ , M_A/Δ , M_V/Δ の対 応を示す. 同図を見ると, $M_A \ge \Delta$ は M_V に比べて f_c による変化が大きいことが分かる. M₄とΔの関係を 見ると, f_g に対する勾配は M_A が Δ よりも大きい, あ るいは同じくらいであるので, M_A/Δ は f_g についてフ ラットか右肩上がりの関係になっている. f. が小さ くなるほど, M_A が Δ より勾配の大きい領域が広がっ ており,ほとんどの f_{g} で M_{A}/Δ が右肩上がりの関係 になっている.一方, M_V は f_a に対する勾配が Δ より も小さい区間があり、そのような区間では M_{ν}/Δ は f_{a} に対して右肩下がりとなっている. M_{A} とは逆に f_{c} が小さくなるほど、M_VがΔよりも勾配が小さい区間 が広がっていき、対象とする f_g の大部分で $M_{l'}/\Delta$ が 右肩下がりとなる.以上の特性は M_A と Δ が M_V に比 べて $f_c \geq f_g$ の次数が高いことに起因する. また, f_{max} の次数も M_A が M_V より大きく、そのため f_{max} による 増幅度の変化は F_A が F_V よりも大きい. ただし, f_{max} の次数はfcに比べて小さく、また、値の変動も小さ いことから, f_{max} の増幅度への影響は f_c と比べると 小さい.

Fig.4 Relationship between f_c and M_A , M_V , Δ

3.3 地盤増幅度の Mw 依存性

3.2で震源スペクトルのパラメータf_c, f_{max}の地盤増 幅度への影響を調べたが,地震規模と地盤増幅度の 関係を調べる上ではマグニチュードと地盤増幅度の 関係を調べる方が分かりやすい.そこで,ここでは モーメントマグニチュードM_wによる地震増幅度の 変化を調べることにする.震源スペクトルのコーナ 一振動数f_cは地震の規模に依存し,地震観測記録に 基づく研究でf_cとM₀に相関関係があることが報告さ れている^{例えば13),14)}.本研究では次のf_cとM₀の関係式 ¹³⁾を用いて検討を進める.

$$f_{\perp} = 10^{\{(23.38 - \log M_0)/3\}} \tag{13}$$

 M_0 は地震モーメント(dyne・cm)である.ただし、地 震規模を表す際にはマグニチュードを用いることが 多いので、 $M_w \ge M_0$ の関係式¹⁵⁾を介して、次に示す f_c $\ge M_w$ の関係式を用いた.

$$f_c = 10^{\{(7.28 - 1.5M_w)/3\}} \tag{14}$$

f_{max} は地震規模に依存するかどうか意見が分かれて いるので,依存する場合としない場合の両方のケー スを考えて検討を行う.*f_{max}* が地震規模に依存する とした場合,次に示す地震モーメントとの関係式を 用いて検討を行う¹⁶.

(b) F_V Fig.6 Relationship between f_g and amplification factor case f_c depends on M_w

$$f = 7.31 \times 10^3 \times M_{\odot}^{-0.12} \tag{15}$$

また、 $M_w \ge M_0$ の関係式¹⁵⁾により、 $f_{max} \ge M_w$ は次式のように表すことができる.

$$f_{max} = 85.49 \times 10^{-0.18M_w} \tag{16}$$

先に求めた提案式によって求めた f_g と増幅度の対応を求める. h_g は 0.1, α は 1, β は 1 である. Fig.5, 6 に f_c と f_{max} が M_w に依存する場合, f_c が M_w に依存 する場合の f_g と増幅度の対応を示す. f_c による変化 を見ると, F_A , F_V ともに M_w が大きくなるほど,低 振動数側が相対的に大きくなっているが, F_V の方が M_w による変化が大きい. f_{max} が M_w に依存しない場 合を見ると, M_w に依存する場合と同じく, M_w が大 きくなるほど,低振動数側の増幅度が相対的に大き くなっている. f_{max} による増幅度の違いを見ると, F_A は f_{max} が小さいほど,増幅度が最大となる f_g が低振動 数側にシフトしている.一方, $F_V \mbox{td} M_w = 4$ の場合は f_{max} による増幅度の変化が少し見られるが,それよりも 大きい M_w では増幅度にあまり違いは見られない.

4. 提案式と観測記録による地盤増幅度の比較

2,3章では地震動スペクトルのパラメータと地盤 増幅度の関係を導き,提案した増幅度評価式に基づ き震源スペクトルのパラメータf_c,f_{max}やM_wが地盤増 幅度に及ぼす影響を調べた.本章では提案する評価 式による増幅度と,KiK-netで得られた地震観測記録 を用いて求めた増幅度を比較し,提案式の適用性を 検証する.また,M_wと提案式および観測記録による 地盤増幅度の対応を見る.本論文で求めた増幅度評 価式は地表と解放基盤面を対象としたものであるが, ここでは地表と地中の基盤面に対してそのまま評価 式を適用する.

観測記録による地盤増幅度は地表と地中の加速 度時刻歴波形の水平2成分最大値の大きい方の値の 比と定義した.今回,6 つの KiK-net 観測点を対象 に地盤増幅度を評価する.これらの観測点の記録は 以下の条件のもと選定した.

- ・*M_w*≧4.0の地震の記録
- ・地表と地中の水平成分いずれも最大加速度が 1cm/s²以上の記録
- ・地盤の非線形化の影響を避けるために最大加速度が100cm/s²未満の記録

 M_w はF-net¹⁷⁾による値を用いた. Table 1に対象とした KiK-net観測点の記録の諸元を示す. 増幅度は先に求 めた式を用い, $f_c \geq f_{max}$ が M_w に依存するものと仮定し て式(14), (16)から計算し, 増幅度の算出に用いた. 各観測点のサイト増幅特性のパラメータ f_g , h_g , α , β は式(5)によるサイト増幅特性と観測記録から求め た地表記録と地中記録のフーリエスペクトル比(以 降, 観測スペクトル比)が最もフィットする場合の値 とし,以下の関数が最小となるようにして求めた.

$$Error = \sum \left\{ \log_{10} G_{obs}(f) - \log_{10} G(f; f_g, h_g, \alpha, \beta) \right\}^2$$
(17)

 $G_{obs}(f)$ は観測スペクトル比であり、S波到達から10秒 間を切り出して求めた.波形を切り出す際は両端に 5%のコサインテーパーを付けたウインドウを用い、 フーリエスペクトルはバンド幅0.4HzのParzen Windowによって平滑化した.サイト増幅特性とのフ ィッティングには観測スペクトル比の算術平均値を 用いた. $G(f; f_g, h_g, \alpha, \beta)$ は式(5)によるサイト増幅 特性である.また、式(17)は0.1~20Hzを対象とした.

Fig.7に観測記録による増幅度(観測値)の提案式に よる増幅度(計算値)の対応, Fig.8に対象とした6観測 点の観測スペクトル比とサイト増幅特性,また, Table 2にフィッティングにより得られたサイト増 幅特性のパラメータ,増幅度の観測値と計算値の常 用対数値の相関係数を示す.Table 2のVsは地中地震 計が設置されている層でのS波速度である.Table 2, Fig.7を見ると F_V はKiK-net石下(IBRH10)では相関が 低いが,それ以外の観測点では相関係数が0.65~ 0.83である.KiK-net石下の相関係数が低い要因とし ては観測スペクトル比と式(5)によるサイト増幅特 性のフィッティングが悪いことが考えられる. F_A は 相関係数が0.16~0.62であり, F_V と比べて相関係数 が低い. F_A の観測値と計算値の対応が悪い要因とし て, F_A への影響が大きい f_max が M_w に依存すると仮定 したこと,地震によって高域遮断フィルターの形状が異なることが指摘されている¹⁸⁾が,地震によらず式(3)を用いたことが考えられる.

続いて、Fig.9の M_w と地盤増幅度の観測値、計算値の対応を見ると、KiK-net石下を除き、 F_v の方が M_w に対する依存性が強く、 M_w の増大に伴う増幅度の低下が顕著である。また、ばらつきはあるものの提案式による増幅度は、 M_w に対する増幅度観測値の傾向を概ね表していることが分かる。

以上の地盤増幅度の観測値と計算値の比較から, F_A は改善の余地があるが, F_V については観測値と計 算値の対応がよいことから,地震観測記録や地盤情 報からサイト増幅特性が計算できる環境であれば, 本論文で提案した F_V の評価式を地震動予測に活用 できる可能性がある.ただし,今回,観測値と計算 値の比較対象とした地震観測点は少ないことから, 今後,より多くの観測点を対象に本論文で提案した 増幅度評価式の適用性を検証する必要がある.また, F_A の評価式については高域遮断フィルターの形状 を今回用いた式以外のものを用いるなどして,観測 値と計算値の対応の向上をはかる必要がある.

5. まとめ

本論文では著者が先に求めた地盤増幅度の評価 式を改良するとともに,評価式による増幅度と観測 記録による値を比較し,提案した増幅度評価式の適 用性を調べた.サイト増幅特性を改良して求めた増 幅度評価式によって,震源スペクトルのコーナー振 動数fcやfmaxによる最大地動加速度,最大地動速度の 地盤増幅度への影響を調べた.その結果,fmaxによる 影響は最大地動加速度,fcによる影響は最大地動速 度の地盤増幅度の方が大きいことが明らかになった. また,モーメントマグニチュードによる地盤増幅度 への影響は,最大地動速度の方が大きいことが分か った.

最後に本研究で提案した増幅度評価式の地震動 予測への適用性を調べるために,観測記録と提案式 による地盤増幅度を比較した.その結果,*F*_vは全体 的に見て観測値と計算値がよく対応しているが,*F*_A は観測値と計算値の対応がよくなかった.この要因 の一つとして*F*_Aに対して影響の大きい高域遮断フ ィルターを地震によらず同じものを用いたことが考 えられる.今後は高域遮断フィルターの形状を今回 用いた式以外のものを用いるなどして,観測値と計 算値の対応の向上をはかる予定である.また,今回, 観測値と計算値の比較対象とした地震観測点が少な いことから,今後,より多くの観測点を対象に本論 文で提案した評価式の適用性を検証する予定である. 10

Calculated value

10

Calculated value

FKSH01

R=0.662

10

Calculated value

10

Calculated value

Code	Term	$V_s \text{ (m/s)}$	M_w	Number
FKSH01	2000/7/21-2011/4/23	2600	4.4-7.8	37
IBRH10	2000/9/9-2011/4/2	2350	4.0-7.1	105
IWTH03	2000/7/30-2011/4/1	2800	4.0-7.9	70
IWTH04	2000/7/30-2011/3/28	2300	4.0-7.9	99
IWTH05	2000/7/21-2011/4/12	2600	4.0-7.9	118
IWTH22	2001/4/3-2011/4/11	2780	4.0-7.9	85

Table 1 Parameters for KiK-net sites

0

(b) F_V Fig.7 Comparison observed amplification factor with calculated value

Table 2 Parameters of eq.(5), correlation coefficient between observed amplification factor and calculated value

Fig.9 Relationship between M_w and amplification factor

謝辞:本論文の作成に当たって,防災科学技術研究 所 KiK-net の地震波形を使用させて頂きました.記 してお礼申し上げます.

参考文献:

- 片岡俊一,山本博昭:地震動記録に基づく青森県内の 強震観測点のサイト増幅度,日本地震工学会論文集, Vol. 7, No. 2 (特集号), pp.110-129, 2007.
- 2) 紺野克昭, 鈴木貴博, 鎌田泰広, 長尾 毅: 横浜市高 密度強震ネットワーク観測点における微動を用いた地 盤の平均S波速度の推定, 土木学会論文集A, Vol. 63, No. 4, pp.639-654, 2007.
- 3) 翠川三郎,駒澤真人,三浦弘之:横浜市高密度強震計 ネットワークの記録に基づく地盤増幅度と地盤の平均 S 波速度との関係,日本地震工学会論文集, Vol. 8, No. 3, pp.19-30, 2007.
- 4) 西川隼人,宮島昌克:地震動スペクトルのパラメータ による地盤増幅度の表現と地震規模依存性の評価,土 木学会地震工学論文集, Vol. 31, pp.20-29, 2010.
- Kanai, K. : Semi-empirical formula for the seismic characteristics of the ground, *Bull. Earthquake Res. Int., University of Tokyo*, Vol.35, pp.309-325, 1957.
- 6) 小林喜久二,植竹富一,真下 貢,小林啓美:堆積地 盤の速度構造を事前情報としたスペクトルインバー ジョンによる震源・伝播経路・地盤減衰特性評価法, 第11回日本地震工学シンポジウム論文集,pp.289-294, 2002.
- 佐藤智美: Kik-net強震記録に基づく鳥取県西部地震と その余震のラディエーションパターン及びfmaxの評 価,日本建築学会構造系論文集, Vol. 556, pp.25-34, 2002.
- 川瀬 博,松尾秀典: K-NET, KiK-net, JMA 震度計観 測網による強震動波形を用いた震源・パス・サイト各 特性の分離解析,日本地震工学会論文集, Vol. 4, No. 1, pp.33-52, 2004.

- 9) 西川隼人,池本敏和,宮島昌克:関西地方の地震観測 記録による自治体観測点を想定したサイト特性推定 手法の検討,土木学会地震工学論文集,Vol. 30, pp.118-127, 2009.
- Boore, D. M. : Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, *Bull. Seism. Soc. Am.* 73, pp.1865-1894, 1983.
- 澤田 勉, 平尾 潔, 辻原 治, 三神 厚:最大地動の距離減衰式に基づく工学的基盤地震動のシュミレーション手法, 土木学会論文集, No.682, pp.311-322, 2001.
- 12) Hubert, M. J., Nathaniel, B. N.and Ralph, S. P. : Theory of servomechanisms, Dover Publications Inc.; New edition, pp.369-370, 1947.
- 13) Takemura, M., T. Ikeura, and T. Uetake: Characteristics of source spectra of moderate earthquakes in a subduction zone along the pacific coast of the southern Tohoku district, Japan, J. Phys. Earth, Vol.41, pp.1-19, 1993.
- 14) 加藤研一: K-NET強震記録に基づく1997年鹿児島県北 西部地震群の震源・伝播経路・地盤増幅特性評価,日 本建築学会構造系論文集, Vol.543, pp.61-68, 2001.
- Hanks, T., and Kanamori, H. : A moment magnitude scale, *J. Geophys. Res.*, Vol.84, No. B5, pp.2348-2350, 1979.
- 16) Faccioli, E. : A study of strong motions from Italy and Yugoslavia in terms of gross source properties, *Geophysical Monograph*, 37, Maurice Ewing, AGU, Vol.6, pp.297-309, 1986.
- 独立行政法人 防災科学技術研究所 広帯域地震観 測網F-net, http://www.fnet.bosai.go.jp/
- 18) 鶴来雅人,香川敬生,入倉孝次郎:西日本で発生する スラブ内地震の観測記録に見られる高周波数領域に おけるスペクトル低減特性に関する検討,第13回日 本地震工学シンポジウム論文集,pp.3826-3833,2010.

(2012.1.10 受付)

INFLUENCE OF SOURCE SPECTRUM AND EARTHQUAKE MAGNITUDE FOR AMPLIFICATION FACTOR AND APPLICABILITY OF EVALUATION FORMULA TO OBSERVED VALUE

Hayato NISHIKAWA

ABSTRACT : The study examine influences of parameters of source spectrum and moment magnitude for amplification factor based on a relation between spectrum of earthquake motion and site amplification factor derived by Parseval's theorem and extreme value theory. The applicability of the proposed formula is examined in comparison of the amplification factor estimated by the formula with observed one. The influences of corner frequency f_c and cut off frequency f_{max} on amplification factors for PGA and PGV are investigate using the proposed formula. We clarified that influence of f_c for PGV is larger than that on PGA and f_{max} clearly affects PGA rather for PGV. A relation between M_w and amplification factor is also examined, the lager M_w become, the lower f_g of maximum amplification for PGV shifted. Finally, comparison of theoretical and observed amplification factors shows that their amplification factors for PGV have a good agreement rather than PGA. *Key Words : Amplification factor, Corner frequency, Cut off frequency, Source spectrum*