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Abstract: Singular perturbation problems for nonlocal reaction-diffusion equations with the Neumann boundary con-

ditions are treated. It is exhibited, by means of approximation and perturbation methods, that the layer solutions of

a scalar bistable nonlocal reaction-diffusion equation converge to solutions of the averaged mean curvature flow on a

finite time interval as the singular perturbation parameter tends to zero.
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1. Nonlocal reaction-diffusion equation
We consider in this paper the following scalar bistable

nonlocal reaction-diffusion equation:
wy = 20u+ f(u) = (Fu)),
Ou/On = 0.

Here, 2 is a smooth bounded domain in RN (N > 2)

with total volume |{2| and the outward unit normal n on

(RD)

the boundary 0<; € a small positive parameter; f a non-
linear function of bistable type, a typical example being
f(u) = u — u?; and the symbol (-) stands for the spatial

average over {2, i.e.,

1
(¢ i= o | o

Rubinstein and Sternberg V) derived the nonlocal equation
(RD) as a shadow system for the viscous Cahn-Hilliard

equation »-

Tur = —A[EAu + f(u) — g

(vCH) /
Ou/On = 0Au/On = 0,

with respect to the limit operation of the parameter 7 —
0. The function v = u(t, ) represents, e.g., an order pa-
rameter or a concentration of one of the components in
the mixture at time ¢ > 0 and position z € (2, and the
term Awy is regarded as a viscous effect. In particular, if
the viscous effect is negligible, (vCH) is reduced to the
Cahn-Hilliard equation

Tup = —A[e2Au+ f(u))],

(CH)
Ou/On = 0Au/On = 0.

For (RD) with sufficiently small € > 0, it is known that
the dynamics of solution consists of several stages, and is

roughly summarized as follows.

(S1) Generation of layers.

The solution with an appropriate initial condition
generates sharp internal transition layer in a nar-
row region of O(e) near a hypersurface, called an
interface. Such a solution is referred to as a layer

solution.

(S2) Motion of interfaces (i).

The layer solution begins to move in such a way that
the corresponding interface is driven according to a

certain motion law.

(S3) Motion of interfaces (ii).

The layer solution then comes to evolve such that
the motion of the corresponding interface is gov-
erned by another motion law, called the averaged
mean curvature flow. The interface is driven in such
a way that the volume of domain enclosed by itself
is preserved and its surface area decreases. After a
coarsening process, the interface evolves into a sin-

gle sphere.

(S4) Motion of bubbles (i).

The layer solution with spherical shape is referred
to as the bubble solution. The bubble solution drifts
with exponentially slow speed, without changing
shape, towards the closest point on 02 from the

center of the corresponding sphere.

tLecturer, Natural Sciences, Maizuru National College of Technology



Koji OKADA

SRR AL E

(S5) Motion of bubbles (ii).

Once the bubble solution attaches to the bound-
ary 0, it intersects perpendicularly to 02 with
hemisphere-like shape, and evolves along 02 by its

geometric information.

The dynamics in (S1) through (S3) was discussed by
means of formal asymptotic analysis . For (S4), the ex-
istence of bubble motions was rigorously established by
Alikakos et al. ¥. Ward -9 gave an explicit asymptotic
ordinary differential equation for the distance between
the center of the bubble and the closest point on 9f2 from
it. Alikakos et al. ” derived such an ordinary differential
equation for the Cahn-Hilliard equation (CH), and com-
pared the bubble motions for (CH) with those for the non-
local equation (RD). The dynamics in (S5) was studied
by Alikakos et al. ® and Ward ©. This paper is concerned
with the dynamics occurring in the stages (S2) and (S3).

2. Internal transition layers and interfaces

In the stages (S2) and (S3), the dynamics of layer solu-
tions is approximately captured by a motion law of inter-
face. Such a motion law is called an interface equation.
Throughout the remaining part of this paper, an interface

means

a smooth, closed hypersurface embedded in
Q C RY, staying uniformly away from 0.

The interface I" separates the whole domain §2 into two
subdomains. We denote by Q7 one containing 91 as a

part of boundary, and by €2~ the other:

Q=0"UTuQt, a0 =T, 90t =00QuUT,

and by v(x;I") the unit normal vector on I" at = € I point-
ing toward the interior of the subdomain QF. We also let
the nonlinear function f(u) satisfy the conditions listed
below, in which the nonlinearity is regarded as f(u) — v,
rather than f(u) itself, by introducing an auxiliary vari-
able v for the nonlocal term.

(A1) The function f is smooth on R and the nullcline
{(u,v) | f(u) — v = 0} has exactly three branches
of solutions

{(w,v) [u=h"(v), (v, 00)},
{(U7U)|u:h+(v)7 (—00,7)},
{(u,v) [u= ho(v)7 v € (v,9)},

NS
NS

satisfying the following inequalities for each v €

(v,0):

h~(v) < h°(v) < hT(v),
f'(h%(v)) <0, orequivalently, hi(v)<O0.

(A2) Foreach v € (v, ), define J(v) by

h* (v)
J(v) = /h(v) (f(u) —v)du.

Then there exists a unique point v* € (v,v) such
that J(v*) = 0 and J'(v*) < 0.

2.1 Interface dynamics in (S2).

The dynamics of layer solutions to (RD) in (S2) is slow,
and is of order O(e). In order to capture its dynamics
in time scale of O(1), we rescale the time ¢ in (RD) as
t—t/e

euj = 2 Aut + f(uf) — (f(u)),
(RD’)

Ouf/On = 0.
Under the assumption (A1), it is known 9 that the fol-
lowing problem, called the nonlinear eigenvalue prob-
lem, has a unique smooth solution pair (Q(z; v), ¢(v)) for

each v € (v,T) acting as a parameter:
Q22 +¢Q: + f(Q) —v =0,

lim Q= h%(v), Q=0 =h’(v).

z—+o0

(NEP)

The functions ) and c are referred to as the profile and
the speed of the traveling wave, respectively. By employ-
ing the wave speed ¢(v), the interface equation in (S2) is

expressed as
v(a; L(t)) = e(v(t)),
(IE) 8(t) = h(o(t); T(O)e(o() T (D),

with

Wt (v) = h™(v)
hy ()| + A (v) ||

h(v;T) =

Here, the scale of time is that of (RD’), the symbol
v(z;T'(t)) stands for the normal velocity of I'(¢) at x €
I'(t) in v-direction; |*| and |I'| are the volume of Q*
and the surface area of I, respectively.

The motion law of interface in (S2) was earlier given
in . The form, however, was implicit and unsuitable for
the circumstantial examination. The explicit form by the
interface equation (IE") was later derived by Okada '?, in

which the unique existence of smooth solutions and the
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stability of the equilibria to (IE") were successfully estab-
lished.

For 0 < € < 1, the dynamics of the solution «* and
the nonlocal effect (f(u€)) to (RD’) are approximated by
that of the solution pair (I'(¢), v(¢)) to (IE') in the sense
that

(flu(t,-)) = v(t),
u(t, ) ~ hE(), = e QE().

Note, in particular, that the second property shows the
sharp layer structure of u¢ near the interface I'(¢). Such a
characterization in the stage (S2) was justified by Okada
10) as follows.

Theorem 1. Assume that (A1) and (A2) are satis-
fied, and let (I',v) be the smooth solution pair to (IE')
on a time interval [0,T). Then there exist € > 0 and
an e-family of smooth solutions uf to (RD’), defined for
€ € (0, €*), satisfying

lim (f(u®)) = v uniformly on [0,T],

e—0
lim u = h*E (v) uniformly on ﬁ% \ I'}. for each § > 0.
e—

Here,

0F = |J B x*w), T5:= (J {8 xT@°
te[0,T] te[0,T]

with ['(2)° = {z € Q]dist(z,I(t)) < J}, the -

neighborhood of the interface I'(¢).

2.2 Interface dynamics in (S3).

In the stage (S3), the dynamics of layer solutions to
(RD) is much slower, compared with that in (S2), which
is of order O(e?). To capture this in time scale of O(1),
it is adequate to rescale the time ¢ in (RD) as ¢t — ¢/ €2,

and to employ the rescaled version
uy = A + f(u) — (f(u)),
€]
Ou¢/On = 0.
The corresponding interface equation is known to be the

averaged mean curvature ﬂOW:

v(z; (1) = —r(z; (1) + (D),
@

I'(0) =T.
Here, the scale of time is that of (1), the symbol x(z; ")
stands for the sum of principal curvatures (the mean cur-
vature, for short) of ' at € T", and % denotes the average

ofkonl,ie.,

1
R(t) = ——
NIV
dS! being the surface element of I' at # € I'. We no-
tice that the sign of « is chosen so that it is positive if the

R T () dSE®,

center of the curvature sphere lies in 27. The existence
and uniqueness of smooth solutions to the averaged mean
curvature flow (2) are well established D19,

In the previous stage (S2), the interface dynamics by
(IE') approximates the dynamics of layer solution to

(RD’) for small € > 0. Then, in this stage (S3),

does the averaged mean curvature flow (2)
approximate the dynamics of layer solution
to the nonlocal reaction-diffusion equation
(1) for small € > 0?

By a variational method, it was earlier proved in Bron-
sard and Stoth ' that the answer to this question is affir-
mative for radially symmetric solutions in a spherically
symmetric domain. Later, it was proved by Okada '® that
the answer remains affirmative without such restrictions

of symmetricity.

Theorem 2. Assume that (A1) and (A2) are satisfied,
and let ' be the smooth solution to (2) on a time interval
[0,T]. Then there exist €* > 0 and an e-family of smooth
solutions u to (1), defined for € € (0, €*], satisfying
lim (f(u)) = v* uniformly on [0, T,

e—0

h_r)r(l) u® = h*(v*) uniformly on ﬁ; \ I'. for each § > 0.

It is in general not so easy to establish this sort of con-
vergence result for nonlocal problems. One reason for the
difficulty is that the method of sub- and super solutions
based on the maximum principle, or comparison princi-
ple, is not applicable. Situation is the same even for the
most fundamental scalar equation (1), and so it is for the
higher order equations such as (vCH) and (CH). To estab-
lish the convergence results as in Theorem 1 and Theorem
2, we followed an alternative method, an approximation
method. This method is based on the singular perturba-
tion method and has been developed as a way to treat
boundary/internal layers appearing in local elliptic prob-
lems 7?7 and in local parabolic problems 23D It is
expected that the approximation method is also applica-
ble not only for scalar but also for system of (or higher
order) nonlocal equations, and a further investigation in
this direction will be our future task.

We exhibit in the remaining part of this paper that the

approximation method does work for the scalar nonlocal
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reaction-diffusion equation (1), via the proof of Theorem
2. The procedure of approximation method consists of
two parts. The first part is to construct approximate solu-

tions with high degree of accuracy.

Proposition 1 (construction of approximate solutions).
Assume that (A1) and (A2) are satisfied, and let " be
the smooth solution of (2) on a time interval [0,T]. For
each integer k > 2, there exist € > 0 and an e-family
of smooth approximate solutions u$, to (1), defined for
€ € (0, €*), satisfying

€
2 Oufy

el 62Auf4 — fu) + (f(u%))

1oe

ouy
on

:07

lim (f(u%)) = v* uniformly on [0,T],

e—0
h_r)r(l) uSy = hE(v*) uniformly on ﬁ; \ ['. for each § > 0.

Second part is to derive true solutions as a perturbation
from the approximate solutions constructed in Proposi-

tion 1.

Proposition 2 (true solutions near approximate ones).
For each integer k > 2, let u, be the e-family of smooth
approximate solutions to (1), defined for € € (0, €*], sat-
isfying the properties stated in Proposition 1. Then there
exists an e-family of smooth true solutions u to (1), de-
fined for € € (0, €*], such that

lu® = ugllze = O(" ™).

Theorem 2 immediately follows from two propositions

above.

3. Outline of proof of Proposition 1
Let us now recast the equation in (1), by introducing

an auxiliary variable v, as
(3a) Auf = EAuc + f(uf) — o,
(3b) v = (f(u%)) =0,

and treat the equation (3a) as a scalar equation with v¢
being regarded as a parameter.

Let M be a fixed (N — 1)-dimensional reference man-
ifold, and (¢, -) : M — € a representation of I'(¢). We
define the e-dependent interface I'“(¢) as a level set of the
solution u¢. The transition layer is expected to develop
near {x € Q|u(t,z) ~ h%(v*)}, and without loss of

— o),

generality, we may assume h°(v*) := 0 by an appropri-

ate translation. From this, we set
Ie(t) .= {z € Q| u(t,z) = 0}.

We also expect that ['¢(¢) is expressed as the graph of a

smooth function over I'(¢):
[(t) ={z € Q|x =(t,y)+eR(t, y)v(t,y), y € M},

where R€ is a priori unknown and to be determined.
Let us decompose the domain §2 by the interface I'*(¢)
as
Q=Q5 (1)U (t)uQst(t)

and consider the following approximation problem asso-
ciated with (3a)

GQU?i _ 6QAUE,:I: + f(ue,:l:) P
for t > 0, x € Q9% (t), with the boundary conditions

OusT

ue,:l:

= 0 on 0.

re@ =0,
Substituting formal expansions

R = R' 4+ eR*+ 2R3+, v* =0+ ev! +e20%+- -

into the equations and the boundary conditions above, we
obtain the formal outer approximate solutions ufﬁ)UT
(giving good approximation on the outer regions QF \
I'(t)%) and inner approximate solutions uffIN (giving
good approximation on the inner region I'()%). We note,
at this stage, that our outer and inner approximate solu-
tions still depend on the unknown data (I", R¢; v°).

Once the formal approximate solutions are obtained,
we impose on them C'-matching conditions
aufq’jiN

o ov on 1*(2),

which guarantee that the inner solution is smooth across

€,—
8“A,IN

the level-set interface I'*(¢). This condition gives rise to a
series of equations for (I', R; v¢); the lowest order (0-th

0

order) equation is v° = v*, which means that in this stage

(S3) the interface dynamics in the previous stage (S2) is

in equilibrium. The first order equation is
vt v = —k 4+ (v*)ol,

and j-th (3 > 2) order equation is

N-1
RI7! = (ARA + Z nf) R4 & (v* )
i=1

+ lower order terms depend only on
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where Al
duced from those on I'(¢) by (¢, -). In order to deter-
mine (I, RY, ... ;0! 02, ..

equations coupled with the equations above.

is the Laplace-Beltrami operator on M in-
.), we need another series of

Let us now move on to the second equation (3b). We
can easily find that v — (f(u€)) in (3b) is recast as

vt = (f(u)) =
(4a) 1 (€ Auf — 2uf) dx
1] Jree)s
(4b) 1 (€ Auf — 2uf) d.
12| Jo\r@)s

We recall that our inner and outer approximate solutions
ufffN and u AiOUT still depend on the unknown data
(T, R¢;v°). Substituting uAJN and uAVOUT into (4a) and
(4b), respectively, and constraining v¢ — (f(u€)) := 0 so
that (3b) is satisfied, we obtain another series of equations

for (I', R¢; v°); the first order equation is

1
d(v* )t = —/ kdSY,
Ol

and the j-th (5 > 2) order equation is

N—1
Ny 1 .
d(v* ) =— m//\/t (Z K2 4 Kyt - 1/)) RIZNdSy
i=1
+ lower order terms depend only on
(T,RY, ..., RI=2v* ot .. 077 )).

We now find that C'-matching condition and the
nonlocal constraint give rise to the following series of

parabolic problems:

(5a)

1
’yt-y:—n—l——/ ndS};,
T Jm

(5b)

N-1
RI7! = (ARA + Z n§> RIT1
|r| (Zn—l—n )Rﬂldsf

+ lower order terms depend only on

IR ..., RI72:0* ot . i1,
R, .. Ut vt

The first equation (5a) is nothing but the averaged mean
curvature flow. Thus, once a smooth initial interface is
given, it is guaranteed that there exists unique smooth so-
lution I" to (5a) on a finite time interval 'V-'4 | The equa-
tion (5b) is a nonlocal nonhomogeneous linear parabolic

equation of the following form

N—-1
= (A% + Z @) R+/ a"Rdy +b,
i=1 M

T

where a" is a function depending only on I" and b a non-

homogereous term. This is expressed as

Rt(t7 y) = A(t/ y)R(t/ y) + b(t/ y)7

and the generator of A is sectorial because the linear dif-
ferential operator Al + ZZ 1 n , called the Jacobi
operator, generates a sectorial operator while the linear
nonlocal effect | M a' R dy defines a bounded operator.
Therefore, by the abstract theory for evolution equations
32)_itis ensured that there exists a unique smooth solution
R on a finite time interval, provided that I', b and initial
data are all smooth. Thus, the series of equations for R’
are successively solvable and we obtain the desired ap-

proximate solution as in Proposition 1.

4. Outline of proof of Proposition 2

In what follows, where no danger of confusion will
arise, we employ the same symbol M to denote positive
constants independent of € > 0 which could differ from
line to line.

For each t € [0, T7, let L(t) be the linearized operator

of (1) around the approximate solution u:

L(0)p 1= Dp + =5 [ Wi (1) — { £ (s (1, )]

By introducing a scaling parameter s € R, which is to

be determined, we rescale the time ¢ in £(¢) by

(6) t =€,

and seek a true solution u¢ of (1) with the following form:
)+ @ (7)),

Our equation in (1) is recast as an evolution equation

@) (1) = AY(T)@"(7) + N°(7, °(7)) + R“(7),

(7) uf(e’r, ) = uS(e'r € [0,T/¢€°].

where “dot” stands for the derivative with respect to the
variable 7; A(7)p = e$L(eT)p, N€(T, ) and R¢(T)
are the linear, the nonlinear and the remainder parts, re-
spectively, satisfying

(9a) ETN(T, ) = O(|e]?),
(9b) [R(7) || = O(e*TF1),

for 7 € [0,T/€%].
We now decompose L%(Q) as L*(Q) = M @ M+,
where M and M+ stand for the space consisting of zero-

average functions and the orthogonal complement of M
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|—1/2

spanned by the constant function |Q , respectively.

According to this decomposition, we also decompose the
function ¢°(7) in (8) as

(10) P(T)() = #1(T) () + $5(7),

where §(7) € M and ¢$(7) € M. Then, the equation

(8) is equivalent to the following system:

(11a)
(1) = AY(T) i (T)

(11b)
¢5(7) = (RE(7)).
Here, R¢(7, ¢2) (2 € ML) is defined by
(12)
RE(7, ¢2)
= R(1) = (R°(7))
+ (s (€T) = (F (W (e7.) | e

Note that (11a) is the evolution equation and (11b) the
ordinary differential equation.

In order to deal with the evolution equation (11a), let us
now set up some appropriate function spaces. Let p > 2
and we define the basic space by

(13) X5 = LP(Q) N M
and the domain of A°(7) by
X5 = W2E(Q) N M,
where WZZ;(Q) is the same as the usual Sobolev space
WEP(Q) := {u € W?P(Q)|du/On = 0 on N}
as a set, with the weighted norm
(14) Nullyzy = lullzs + €[ Dullzs + €[ D?ullps.

In the sequel, some weighted norms and embedding prop-
erties are employed. We notice here that the weighted
norms are introduced to make the embedding constants
independent of € > 0.

For a € (0,1), let X be the real interpolation spaces
between X and X7

(15) X& = (X6, XD)ap

endowed with the norms || - ||, where (-, -)q , stands for
the standard real interpolation method (functor). Note
that X, enjoy the continuous embedding properties

X5 — X§,
0<a<p<l =
lulla < Mllullg (u€ X5).

We also set up weighted Holder spaces C¢,,(€2) for a €
(0,1), which are the same as the usual Holder spaces

C(Q) as sets, with the weighted norm
sN s+
a6)  fulles, = ull= + 5 e,

where [u]c« is the Holder seminorm defined by

|u(z) —u(a)]

[U]Ca ‘= Sup |$_$,|a

z,x’' €Q
z#z’
Notice that, if the relation 2« — N/p > f3 is valid for
some «, 3 € (0,1), then X¢ is continuously embedded
in Cf:p(Q):
7)
N X5 = CL(Q),
20— — > =
P lullgp, < Mlulla (u€ X5).
We simply denote by ||Blla,3 the operator norm of a
bounded linear operator B : X§ — X§.

It is easy to verify that the linear operator £¢(¢) under
the Neumann boundary condition is formally self-adjoint
in L2(Q)NM, and therefore eigenvalues are real. We also
obtain by the variational characterization for the principal
eigenvalue A\° of L¢(t) that

Jo =1Vl + e 2f (u$)) || dx

A= sup 5
peH (@) lellZ2 )
©#0, (p)=0
< s Jo =1Vl + e 2 f/(uf)|pl? do
B cpelf;:éﬂ) ||‘P||%2(Q)
]

This says that A° is estimated from above by the prin-
cipal eigenvalue of the linearized Allen-Cahn operator
A+ € 2f(u4). On the other hand, according to the
results established by Alikakos et al. 3 and Chen ¥, the
principal eigenvalue of the linearized Allen-Cahn opera-
tor is bounded above for € > 0 and ¢ € [0, T]. Thus we
have \¢ < \, for some A\, > 0.

By considering the resolvent equation in L2(Q2) N M,
it turns out that £¢(t) is a sectorial operator and that a
resolvent estimate is valid in L?(£2). Along the line of
arguments in Tanabe 3%, the resolvent estimate can be
modified from L2-version to LP-version (p > 2). Rescal-
ing the time ¢ in £¢(¢) as in (6), we find that A°(7) is
a sectorial operator for each 7 € [0, T'/¢] satisfying the
resolvent estimate
(18)

- M,
IA=A(T) " Hlo,0 < PPN

65>\*|7 >‘ € S* C p(A (7_))



Approximations and Perturbations

No.48 2013 G254 - 3)

in Nonlocal Reaction-Diffusion Equations

for some 6, € (0,7/2) and M, > 0. Here,
Sei={A e CIAN#£ €N, arg(A—€’A\)| < 1/2+06.}.

On the other hand, we note that the operator A¢(7) —
A¢(o) consists of a multiplication operator and an inte-
gral operator. In particular, it does not involve any dif-
ferential operator. Thanks to this fact, we can easily
show that there exists a constant M/ > 0 such that for
a€0,1/2)

A (7) = A%(0)[l1,0 < Me*(T —0)

holds for sufficiently small e > 0, s > 4and 0 < ¢ <
7 < T/€°. Moreover, from the resolvent estimate (18),
we find that for 0 < o < 8 < 1, there exists a constant
M = M(a, ) > 0 such that the following estimate is
valid:

||6(T_U)AE(U)”047B < M(’T _ U)Q—BGESA*(T—U)'

Therefore, we can prove that for 0 < o < f < 1
with («,8) # (0,1), there exists a constant K > 0
such that the evolution operator ®“(1,0) : X§ — Xj
(0 < 0 < 7 < T/e%) associated with the family {A°(7)}
satisfies the estimate

(19) || ®(7,0)|las < M(T — )2 Pe Mt (=)

for s > 4 and small € > 0.
Applying the variation of constants formula to (11), we
obtain

(20a)

Pi(1) = (7, 0)¢1(0)

+ /T (7, 0 )N“(0, 91 (0) + ¢5(0)) do
0
1 /OT d°(r,0)R (0, ¢5(0)) do,

(20b)
5(r) = 5(0) + / (R(0)) dor
0

The existence and uniqueness of smooth solutions is well
established, and therefore our task is only to have an esti-
mate for the solution ¢ to (8) by employing those for ¢
and ¢5 in (20).

We recall that k, s, p and « are parameters related to
the accuracy degree of approximations (cf. Proposition
1), the scaling of time (cf. (6)), the basic space (cf. (13))
and the interpolation spaces (cf. (15)), respectively. We
now let

(21a) k> 2,
(21b) s:=4,
(21c) p > 2N,
21d) a € (3/4,1),

and choose ©(0) = ©5(0) + ¢5(0) so small that
(22a) 95 (0)]la = O("),

(22b) p5(0)] = O(e* ).

Let us first treat (20b) together with (22b). The esti-
mate (9b) with (21b) yields that

(5 < 501+ [ IR ()= do
= O("h) + O(F+3) . T/
Therefore, the solution 5 (7) of (11b) with (22b) satisfies

23)  es(m)|=0(* ), Te0,T/eY.

Substituting the solution ¢§(7) with (23) into (20a),
we move on to estimating ¢f. Since p and « are chosen
so that (21¢) and (21d), respectively, it holds that

>~ w

N
20— — > 2-
p

and the embedding relations in (17) are fulfilled for 8 €
(0,1) chosen arbitrarily. Hence, by (9a) and (16) with
(21b), (23) and X — X§, we have the following esti-
mates for o € [0,7'/€%]:

IV (0,65 () + (@)l
< M 1§ + @5l et + llo
< M (llgsliz= + lest) (sl + 151
< ME (Y@ la+ ) (e lla + )

N _2N
< M (g2 + 15 il + ).

Moreover, employing (9b), (23) together with (21b) in
(12), we have for o € [0,7'/€%],
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IR (o, 5)llo
<[RS = (R)llo
+ & || f (ula(e70)) — (' (ua(e°0))) |, sl
<2(IRYlzee + €| (wa(€0)) | o 51
= O(M3) + 2 0(1) (")
< Mettt,
Using these estimates in (20), we find that

(24)

5 () lla

< [[2°(7, 0)lla,a [0 (0) [l

_ﬂ i € €
T me(-%) / 124(r, )llo.a |5 (0|12 do
M’H_l_ﬂ i Pe € d
M [0 ) ol ()l do

MR / 19<(r, o)llo.0 do,
0

where the inequality 2k > k + 1 (under (21a)) has been
employed to get the last term.
Let r¢(7) be the function defined by

64

(25) (1) i= (| (T)[la ™ XHEIT 7 e [0,T/€Y.

Then, by the estimates (19) with (21b), we can compute
(24) in terms of 7¢(7) so that

(26)
re(7)

<M (TE(O) n O+E)T 2(1-10)

X /OT(T — o) (0)2 do

4ok (t1—0)"%(o)do

IN

M <rf(0) +0-3) /OT(T —0)""r*(0)?do

+ / (r—0) (o) do + e’“*“"“?’) :
0

By (22a), we have

27) r(0) = lpf (O)lla = O(*+).
Then from the continuity of 7¢(7) it follows that

(28) ré(r) < ek

for small 7 > 0. Setting

T¢ ;= sup{r € [0, T/ | (o) < € forall & € [0, 7]}

we have one of the alternatives
€ e\ _ k € __ 4
r(T)=¢" or T =T/¢".

Assuming the former situation is realized, we can com-

pute by employing (27) in (26) so that

(29)
Gk = € (Te)

11—«
<M <6k+1 + 62(1_%)62’“_T e4(1-a)
- 11—«

11—«
_on T 41— _
4 kt1=2 le —c 4(1-a) | o 3)

1—
M1 6k-2+4a—%
1l—a

< €k (Me—l—

11—«
MT 6k-3+4a—ﬂ

+ » 4+ M64a—3> .

1—«

Noting our way of choice of parameters in (21), we have

2N 3 1
k—24+4a——>2-2+4--—-2.-—=2>0,
p 4 2

2N
k—3+4a——>2-1=1>0,
p

3
4a—3>4-1—3:0.

Thus for sufficiently small € > 0, (29) implies

e

k €
e < —,
=

which is a contradiction. Hence, the latter case is real-
ized, namely, (28) is valid for 7 € [0,7'/€*], and by (25)

we have
195 (P)lla < MeP-+EITk — O(ck), 7 € [0, T/é).
By employing (16) and (17), it follows that
k— 2N

G0) g5 le = O(F%), 7€ [0.T/e.

Combining (23) and (30) in (10), we have



No.48 2013 G254 - 3)

Approximations and Perturbations

in Nonlocal Reaction-Diffusion Equations

e (Tl < i ()l + I3 (7)]

2N
P

O ) + O(F )

= O(FY), T€[0,T/eY.

3
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